

Satellite activities at JAXA

Misako Kachi EORC, Space Technology Directorate I Japan Aerospace Exploration Agency (JAXA)

Nov. 27, 2018 2nd GODEX Meeting@New-Delhi, India

Satellites in Orbit

Greenhouse Gases Observation Satellite (GOSAT) Series

Newly Launched

- Decard Channel

GOSAT Characteristics				
Design Life	5 years			
Orbit	Sun-Synchronous (666km, 13:00 (Dsc.))			
Launch	Jan. 23, 2009			
Observation	CO ₂ , CH ₄			

GOSAT-2

GOSAT-2 Characteristics

GOSA

Design Life	5 years
Orbit	Sun-Synchronous (628km, 13:00 (Dsc.))
Launch	Oct. 29, 2018
Observation	CO_2 , CH_4 and CO

Before 2009 GOSAT Launch

- 1997 The Kyoto Protocol at COP 3, GHG observation by a laboratory FTS
- 2003 GOSAT project started
- 2009 The Greenhouse Gases Observation Satellite "IBUKI" (GOSAT) is the world's first spacecraft to measure the concentrations of carbon dioxide and methane, the two major greenhouse gases, from space.

The first 5 years in space (2009 – 2014)

2011 The accuracy of 2 ppm or 0.5% for CO_2 and 13 ppb or 0.7% for CH_4

Chlorophyll Fluorescence measurement from Space

2014 GOSAT 5-year design life Fully redundant system

2009, June Frankenberg et al., GRL 2011

One of the two solar paddles stopped its rotation. (June 2014) The primary Command and Data Management System (CDMS) failed and switched to the secondary (May 2018)

(1) Metrology alignment changed
 > ZPD (Zero Path Difference) -position Biased interferogram (2014)

(2) Pointing mechanism switched (2015)

The next 5 years in space (2014 - until now)

https://mirador.gsfc.nasa.gov/

The Carbon Monitoring System (CMS) CH₄ Flux for North America data set contains estimates in North America based on an inversion of the GEOS-Chem chemical transport model constrained by GOSAT. July 2010

2016

Targeting CH_4 large emission source and mega cities with an agile pointing system by uploading the pointing-angle table every day.

US CH₄ Emission (inventory vs. GOSAT) EDGARv4.2 (Model), the 2012 EPA inventory (EPA, 2014) and GOSAT (Turner et al., 2015, ACP)

An ensemble of SCIAMACHY/ENVISAT (until April 2012) and TANSO-FTS/GOSAT (since mid 2009)(Buchwitz et al.)

JAX

GOSAT-2 was launched on Oct. 29, 2018

With TANSO-FTS-2 and CAI-2

	Characteristics				
	Life	5 years			
	Orbit	Sun-Synchronous (628km)			
	Mass	About 2 t			
	Launch	2018			
-	Observation	$\rm CO_2, CH_4$ and CO			

Simultaneous CO (carbon monoxide) measurement

- 2. All target mode capability
- 3. Cloud-avoiding pointing with onboard camera

Simulated observation pattern over New York City By GOSAT-2

Optimizing observation pattern with full target mode capability and wider pointing angles

TANSC	D-FTS-2
-------	---------

	Band 1	Band 2	Band 3	Band 4	Band 5	
Target Gases	0 ₂	CO ₂ , H ₂ 0	CO ₂ , CH ₄ , CO, H ₂ 0			
Spectral Coverage (µm)	0.75-0.77	1.56-1.69	1.92-2.33	5.5-8.4	8.4-14.3	
Spectral Coverage (cm-1)	12,950 - 13,250	5,900 - 6,400	4,200 - 5,200	1,188 - 1,800	700 - 1,188	
Spectral Resolution	0.2 cm ⁻¹					
Exposure	4 sec					
IFOV	9.7 km					
Pointing	±40 deg. (Along track), ±35 deg. (Cross track)					
Polarimetry	Yes (P and S channels) No					

TANSO-CAI-2 (radiometer)

	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
Spectral Band (nm)	333 - 353	433 - 453	664 - 684	859 - 879	1585 - 1675	370 - 390	540 - 560	664 - 684	859 - 879	1585 - 1675
Tilt		+20 de	eg. (Forwar	d viewing)		-20 deg. (Backward viewing)				
Spatial Resolution		460	0 m		920m		460	0 m		920m
Swath	920 km 7						7			

GOSAT-2 Launch & First Light by CAI-2

October 29, GOSAT-2 Launch

- Full targezt observation capability with wider pointing angles
- Identify CO₂ enhancement by combustion with simultaneous measured CO.

CAI-2 first light (Nov. 5) Off shore Pakistan and Iran

(1)CAI-2-forward(2)CAI-2-backward(3)CAI Nadir

GCOM-C SGLI characteristics				
Orbit	Sun-synchronous (descending local time: 10:30), Altitude: 798km, Inclination: 98.6deg			
Launch Date	Dec. 23, 2017			
Mission Life	5 years			
Scan	Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)			
Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)			
Spatial resolution	250m, 500m, 1km			
Polarization	3 polarization angles for POL			
Along track tilt	Nadir for VN, SW and TIR, & +/-45 deg for P			

- Multi-band Imaging Radiometer (Near UV ~ TIR)
- Polarimeter
- **Tilt Observation**
- 250m Global at minimum
- Data release is scheduled in mid-December 2018 Sample products are available from the G-Portal https://gportal.jaxa.jp/gpr/

GCOM-C/SGLI: observation channels

Sub syste	channel	Center wavelength	width	Standard radiance	Saturation radiance	SNR	Pixel size	
°m		nm		$W/m^2/sr/$	μm or Kelvin	ΤΙ: ΝΕΔΤ	m	✓ NUV band
	VN01	379.9	10.6	60	240-241	624-675	250 /1000	
	VN02	412.3	10.3	75	305-318	786-826	250 /1000	Ocean color
	VN03	443.3	10.1	64	457-467	487-531	250 /1000	
	VN04	490.0	10.3	53	147-150	858-870	250 /1000	Absorption by pigments
	VN05	529.7	19.1	41	361-364	457-522	250 /1000	<i>√ 250-m</i>
	VN06	566.1	19.8	33	95-96	1027-1064	250 /1000	
	VN07	672.3	22.0	23	69-70	988-1088	250 /1000	Vegetation
	VN08	672.4	21.9	25	213-217	537-564	250 /1000	
Z	VN09	763.1	11.4	40	351-359	1592-1746	250/1000	V V Multi-angle
	VN10	867.1	20.9	8	37-38	470-510	250 /1000	
	VN11	867.4	20.8	30	305-306	471-511	250 /1000	Aerosol
	PL01 +60				295	609		✓ <i>Polarization</i>
	PL01 +0	672.2	20.6	25	315	707	1000	
	PL01 -60				293	614		Scattering by particles
	PL02 +60				396	646		
	PL02 +0	866.3	20.3	30	424	763	1000	Cloud, Snow/Ice
	PL02 -60				400	752		
	SW01	1050	21.1	57	289.2	951.8	1000	
	SW02	1390	20.1	8	118.9	347.3	1000	Absorption by water/ice
IRS	SW03	1630	195.0	3	50.6	100.5	250 /1000	
	SW04	2210	50.4	1.9	21.7	378.7	1000	Land/Sea/Snow
	TI01	10785	756	300K	340K	0.08K	250/500/1000	surface temperature
	TI02	11975	759	300K	340K	0.13K	250/500/1000	Thermal emission / 250 ==
Cited 1	rom Okamura	et al., 2018. SI	NR is defi	ned at the st	andard radiance	and IFOV show	n by bold characters	• <i>230-m</i>

GCOM-C 250-m Sea Surface Temperature

GCOM-C 250-m Chlorophyll-a Concentration

GCOM-C Land Surface Temperature

36 35.5 35 Latitude 34.5 34 33.5 Night – Daytime 33 134 134.5 135 135.5 136 136.5 137 Longitude

GC1SG1_201808040202E06210_1BSG_IRSDQ_E163.h5, Param Name= /Image_data/Lt_TI01

Change of $11-\mu m$ brightness temperature around the Kinki area (in the center of Japan)

from 2018/8/4 02:02 UT (daytime)

to 2018/8/4 13:19 UT (nighttime)

15

9

3

-3

-9

-15

Κ

 ✓ Extreme daytime heating is observed around city areas such as the Osaka Plain and Kyoto basin under a hot summer in 2018.

> ✓ SGLI 250-m thermalinfrared observation can be used for investigation of the daily temperature change

GCOM-C Sea-ice Distribution

GC1SG1_201802280109N04709_1BSG_VNRDQ_E006.h5, RGB: SW3, VN11, VN08

RGB image by 1.6 µm, 866 nm, and 672 nm channels around Hokkaido and the south of the Okhotsk Sea captured by GCOM-C on Feb. 28, 2018. Light blue areas show snow or sea ice.

 Detail structures of snow and sea-ice areas can be monitored by the 250 m resolution of a shortwave infrared channel SW03 (1.6 μm), in addition to the VNR channels

GCOM-C Polarimetry+Near-UV GC1SG1_20180812D01D_A0000_L2SG_LTOAF_0100.h5, Param Name= /Image_data/Lt_PQ02

 \checkmark SGLI polarimetry + near-UV will be able to improve the aerosol monitoring

> -122 -120

Longitude

-124

Longitude

Strong absorption of aerosol in the near-UV wavelength

SGLI RGB image of 670nm, 530nm, and 380nm channels 19)

Global Change Observation Mission – Water (GCOM-W "SHIZUKU")

■ GCOM-W "SHIZUKU": Medium size satellite

- Weight: Approx. 2 tons
- Size: 5.1m(L) × 17.5m(W) × 3.4m(H)
- Power generation: Approx. 4000W

Mission instrument: AMSR2

- Advanced Microwave Scanning Radiometer 2 (AMSR2)
- Observe weak microwave from the ground, sea surface, atmosphere
- Follow-on instrument of AMSR-E loaded on Aqua operated by NASA
- Improvement from AMSR-E in accuracy and spatial resolution

AMSR2 Standard/Research Products

Standard Products

Research Products

https://gportal.jaxa.jp/gpr/

http://suzaku.eorc.jaxa.jp/GCOM_W/research/resdist.html

Product Resolution		Resolution	Accuracy	Products	Resolution	Accuracy
Brightness Temperature 5-50		5-50 km	< 1.4 K	All-weather sea surface wind speed	60 km	4 m/s
	Total Precipitable	15 km	GPS:1.5 kg/m ²	High-resolution (10-GHz) SST	30 km	0.6 ºC
	Water			Soil moisture and		
	Cloud Liquid Water	15 km	0.04 kg/m ²	vegetation water content based on the land data assimilation	25 km	Under development
G E O Sea Su Temper Sea Su Wind S	Precipitation	15 km	Ocean 48% Land 86%	Land surface temperature	15 km	3 ºC (forest) 4 ºC (nondense vegetation)
	Sea Surface Temperature	50 km	0.5 °C Zonal RMSE 0.2 °C	Vegetation water content	10 km	± 1 kg/m ² (obs. site at Australia)
	Sea Surface Wind Speed	15 km	1.0 m/s	High resolution sea ice concentration	5 km	± 17 %
	Sea Ice Concentration	15 km	9 %	Thin ice detection	15 km	92.4 % (for Okhotsk sea)
	Snow Depth	30 km	18 cm	Sea ice moving vector	50 km	Under evaluation
	Soil Moisture Content	50 km	4 %	Total Precipitable Water over Land	15 km	2.59 kg/m ² (vs. GPS)
					_	17
/			Released to public	To be released		

AMSR2 Land Surface Temperature

- Algorithm provided by Tom Jackson (USDA) based on Holmes et al. (2009)
- Retrieval of LST by single equation using 36 GHz V TB
 - Equation is obtained by using linear regression between AMSR2 LST and LST at ground observation sites in Europe and US
- Observing top of forest over forest area
- Capable to obtain frequent LST for both day & night
- Released in February 2018 through http://suzaku.eorc.jaxa.jp/GCOM_W/research/resdist.html
 - Detailed validation results are also available at the web site

AMSR2 Thin Ice Detection

- Algorithm provided by K. Cho (Tokai Univ.)
- To detect thin ice area thinner than 30 cm using characteristic space by 18.7 and 36.5 GHz TBs.
- Validation with thin ice area detected by MODIS band 1 & 2 under clear sky condition.
- Accuracy of area 1-3 is 92.4, 88.3 & 97.8 % respectively.
- Final consideration to release in Nov. 2018.

Area 1: Okhotsk Sea, 2: Bering Sea, 3: Hudson Bay

obs cnt

AMSR2 Total Precipitable Water over Land

- Algorithm provided by M. Kazumori (JMA) based on Kazumori and Kachi (2017)
- To retrieve TPW over land (except ice and vegetation area) using polarization differences of 18 and 23 GHz respectively
- Validation versus GPS and radio sonde.
- Newly proposed as research product to complement standard TPW over ocean.

Ascending + Descending Average on Jul. 15, 2014

Validation vs. GPS TPW: Global (Ascending + Descending) during 2012-2018 AMSR2(kaz)-GPS TPW Bias & RMSE Daily Mean(G) (20120703 - 20180630) Red: Bias Blue: RMSE Blue: RMSE Black: Number

DATE

2016

2017

2012

Bias : 0.203593 BMSE : 2 13098

2015

2013

2014

AMSR-E Reprocess Product Status

- To provide consistent dataset between AMSR2 and AMSR-E for long-term analysis, JAXA has reprocessed AMSR-E product applying the latest AMSR2 algorithms.
 - Level 1 & 3 (brightness temperature): Released from G-Portal
 - Level 1B & 1R in AMSR2 format (HDF5)
 - Level 2 & 3 (geophysical parameters): Preparation for public release
 - Applying the current (latest) AMSR2 L2 algorithms and format (HDF5)

AMSR-E L1 Product Ver. 4

- L1 Reprocessing Policy
 - Brightness temperature (TB) between AMSR-E and AMSR2 is not adjusted
 - Swath width of AMSR-E (1450km, 196 pixels for low-freq. Ch. / 392 for high-freq. Ch.) is extended to be equivalent to that of AMSR2 (1620km, 243 pixels for low-freq. Ch. / 486 for high-freq. Ch.)
 - AMSR-E L1R (resampling) product, which is highly requested by users, are newly developed
- Improvements in L1B Algorithm
 - Bias correction of TB is applied to scan edges to extend swath width
 - Improved method to calculate hot load temperature correction by using two orbit paths to resolve gaps between Ascending and Descending orbit products
 - Improved geometric parameters
- AMSR-E L1 products (ver.4) has been released to public through G-Portal since April 2018.
 - https://www.gportal.jaxa.jp/gp/

AMSR-E L2 Ver.8: Validation Status

Product (ID)	Ver.7 (Current ver)	Ver.8 (Reprocess ver.)	Accuracy definition of AMSR2 (Standard/Target)
Total Precipitable Water (TPW)	1.89 kg/m ²	1.65 kg/m ²	3.5 / 2.0 kg/m ² * RMSE of instantaneous observation
Integrated Cloud Liquid Water (CLW)	0.0395 kg/m² (Jan./Jul. 2003年)	0.0273kg/m ² (Whole period) 0.0261kg/m ² (Jan./Jul. 2003)	 0.05 / 0.02 kg/m² * Data spread (total accuracy including parameter dependency: CLW accuracy = Worst STD. + Worst Bias)
Precipitation (PRC)	Ocean: 94.87% Land:123.54%	Ocean:65.92% Land:91.13%	Ocean 50 / 20 % Land 120 / 80 % * Relative error at 50km average (RMSE ratio against averaged precipitation rate)
Sea Surface Temperature (SST)	RMSE 0.62 deg.C	RMSE 0.54 deg.C	0.5deg.C@RSME / 0.2deg.C@Bias * Standard: Global monthly averaged of RMSE * Target: Monthly bias average at each 10-deg lat.
Sea Surface Wind Speed (SSW)	1.164 m/s	1.079 m/s	1.0 / 1.0 m/s * Global monthly averaged of RMSE
Sea Ice Concentration (SIC)	N.H. 6.66% S.H. 8.10%	N.H. 7.01% S.H. 8.02%	10 / 5 % * RMSE of instantaneous observation
Snow Depth (SND)	GSOD 17.0cm	GSOD 17.7cm	20 / 10 cm * MAE of instantaneous observation
Soil Moisture Content (SMC)	Mongolia 3.07%vol U.S. LR 3.87%vol	Mongolia 2.16%vol U.S. LR 4.88%vol	10 / 5 %vol * MAE of instantaneous observation

AMSR2 follow-on Mission

- AMSR2 is now flying more than six years exceeding designed life, and JAXA have received strong requests from both domestic and international communities about needs of the AMSR2 follow-on mission in recent years.
- In response to those requirements, AMSR2 follow-on sensor has been in pre-project phase since September 1, 2018.
 - Mission Definition Reviews (MDR): April to June 2018 COMPLETED
 - Project Preparation Review (management): July 2018 COMPLETED
 - System Requirement Review (SRR): December 2018 ONGOING
 - System Definition Review (SDR): mid-2019
 - Project Transition Review (management): mid-2019
- The new satellite (tentatively called as GOSAT-3) will become a joint mission of GOSAT-2/TANSO-2 successor sensor (advanced spectrometer to monitor greenhouse gases) and GCOM-W/AMSR2 follow-on sensor (advanced microwave radiometer).
 - TANSO-FTS-2 and TANSO-CAI-2 will be replaced with an advanced hyperspectral sensor.
 - Orbit definition is currently under negotiation with TANSO-2 successor mission, but will be decided by SRR. We will keep early afternoon orbit around 13:00 or 13:30 in LT
- AMSR2 follow-on sensor specification
 - Almost equivalent sensor specification to the current AMSR2 (antenna size, channels) except additional higher frequency channels of 166 & 183 GHz for snowfall retrievals
 - New products including snowfall, TPW over land, high-resolution SST, all-weather sea surface wind speed & high-resolution sea ice concentration
 - **Near-real-time data distribution** capability will be the same as AMSR2

Global Precipitation Measurement Mission (GPM)

GPM is US-Japan space cooperation for monitoring global precipitation. GPM core satellite was launched on February 28, 2014.

Global Satellite Mapping of Precipitation (GSMaP)

1-hr Animation during Oct. 20-24, 2015 (Typhoon Champi, Hurricanes Olaf & Patricia)

- GSMaP is a blended Microwave-IR product and has been developed in Japan for the GPM mission (Core and Constellations).
 - Processing and distributing global rainfall in near real time basis (4-h latency) by merging multi-satellite data.
 - Hourly product in 0.1x0.1deg. lat/lon grid.
- GSMaP Realtime version (GSMaP_NOW) over Himawari area (0-h latency)
 - Extension to EUMETSAT/Meteosat area is in preparation.

http://sharaku.eorc.jaxa.jp/GSMaP http://sharaku.eorc.jaxa.jp/GSMaP_NOW

Extension of GSMaP_NOW

- JAXA has provided the GSMaP realtime product (GSMaP_NOW) in the domain of JMA GEO-Himawari since Nov. 2015.
 - The rainfall estimates are provided just now (0-hr latency)
- The GSMaP_NOW domain was extended to the EUMETSAT GEO region (Meteosat/MSG) in 1st November 2018.

Old GSMaP_NOW (JMA GEO-Himawari region)

New GSMaP_NOW (JMA GEO-Hiimawari region + EUMETSAT Meteosat/MSG)

Extension of the NOAA GOES regions is on-going.

Advanced Land Observing Satellite-2 (ALOS-2 or "DAICHI")

Carries L-band Synthetic Aperture Radar (PALSAR-2)

Application	Disaster, Land, Agriclture, Natural Resources, Sea Ice & Maritime Safety					
L-band SAR (PALSAR-2)	Stripmap: 3 to 10m res., 50 to 70 km swath ScanSAR: 100m res., 350km/490km swath Spotlight: 1×3m res., 25km swath					
Orbit	Sun-synchronous orbit Altitude: 628 km Local sun time : $12:00 +/- 15$ min Revisit: 14 days Orbit control: $\leq +/-500$ m					
Life time	5 years (target: 7 years)					
Launch	JFY2013, H-IIA launch vehicle					
Downlink	X-band: 800Mbps(16QAM) 400/200Mbps(QPSK) Ka-band: 278Mbps (Data Relay)					
Experimental Instrument	Compact InfraRed Camera (CIRC) Space-based Automatic Identification System Experiment 2 (SPAISE2)					

ALOS Global DSM (AW3D)

JAXA is starting to process the precise global digital 3D map using some 3 million data images acquired by the Panchromatic Remote sensing Instrument for Stereo Mapping (PRISM) onboard *"DAICHI"* (ALOS).

The digital 3D map consists of a DEM (or DSM) and ortho-rectified images (ORI) that indicate geolocation. DEM is compiled this time has a <u>five meters in spatial resolution</u> with five meters height accuracy (RMSE) that enables us to express land terrain all over the world. Hence its strong character will prove useful in various areas including mapping, damage prediction of a natural disaster, water resource research etc.

The global 3D map Version 1 have been completed on <u>March 2016</u>. JAXA commissioned the processing work and service provision to NTT DATA Corporation and Remote Sensing Technology Center of Japan (RESTEC).

In order to popularize the utilization of the 3D map data, JAXA started to publish the 30 m-mesh global DSM (AW3D30) on April 2016, which is <u>available free of charge</u> for any users including commercial purposes. AW3D30 DSM was translated from original 5 m-mesh AW3D DSM dataset, therefore it still have a five meters height accuracy as expected. We expect that the 3D map will contribute to the expansion of satellite data utilizations and the industrial promotion, science and research activities as well as the Group on Earth Observations (GEO).

Related links

> JAXA AW3D:

http://www.eorc.jaxa.jp/ALOS/en/aw3d/index_e.htm

- AW3D NTT DATA and RESTEC: http://aw3d.jp/en/index.html
- Sample movies of the digital 3D map: http://www.youtube.com/watch?v=pZg78PXnlQc

30-m mesh DSM Ver. 2.1 (Apr. 2018)

The browse image of AW3D30 ver. 2.1 except for over 60 deg. lat areas (as of March 2018).

- AW3D ver. 2 was used as source dataset:
 - Additional CCD alignment calibration (2,600 tiles), global bias error correction (14,900 tiles): Total 15,361 tiles
- Out of them (i.e. over 60 deg. latitude areas) are same with ver. 1.1
- Updates DSM complement policy

Freely Available

- Land-water mask updates using AVNIR-2 ORI
- AW3D30 ver. 2.1 was released on April 2018

Update land-water mask based on AVNIR-2 in AW3D30 ver. 2.1.

Current land-water and low correlation mask in ver. 1.1.

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm

Upcoming Satellites

Earth Cloud, Aerosol and Radiation Explorer (EarthCARE)

JAXA provides Cloud Profiling Radar (CPR) the world's first W-band Doppler radar (94GHz) to observe vertical structure and dynamics of clouds,.

Institutions	European Space Agency (ESA), National Institute of Information and Communications Technology (NICT), Japan Aerospace Exploration Agency (JAXA)
Launch	2018 using Soyuz or Zenit (by ESA)
Mission Duration	3-years
Mass	Approx. 2200kg
Orbit	Sun-synchronous sub-recurrent orbit Altitude: approx. 400km Mean Local Solar Time (Descending): 14:00
Repeat Cycle	25 days
Orbit Period	5552.7 seconds
Semi Major Axis	6771.28 km
Eccentricity	0.001283 32
Inclination	97.050°

Advanced Optical and Advanced Radar

- Advanced Optical Satellite (ALOS-3)
 - Successor of ALOS/AVNIR-2 (highresolution optical imager)
 - Horizontal resolution: 0.8m (panchromatic band) and 3.2m (color band)
 - Swath width: 70km
 - Scheduled to be launched in JFY 2020
- Advanced Radar Satellite (ALOS-4)
 - Successor of ALOS-2/PALSAR2 (L-band SAR)
 - Horizontal resolution: 1x3m (spot-light mode), 3m (high-resolution mode), and 25m (wide swath mode)
 - Swath width: 35kmx35km (spot-light mode), 200km (high-resolution mode) and 700km (wide swath mode)
 - Scheduled to be launched in JFY 2020

Advanced Optical Satellite (ALOS-3)

Advanced Radar Satellite (ALOS-4)

Synergies with Himawari

JAXA Himawari Monitor

- JAXA has been developing Himawari-8 products using the retrieval algorithms which will be consistent with the upcoming Japanese earth observation missions (GCOM-C, GOSAT-2 and EarthCARE), in order to seek synergies between the satellites
- JAXA Himawari Monitor website site was opened in August 2015 to distribute Himawari original (Level 1) and geophysical (Level 2) products
- Over 1800

 registrations from domestic and international users until today

Aerosol Optical Thickness (1530UTC 13 Jan 2017)

JAXA Himawari Products

	Product name		Grid size	Interval	Format	
L1	Reflectance (6 bands)		500m/1km/2km	10min(full) 2.5min(Japan)	HSD	
	Brightness temperature (10 bands)				NetCDF	
L2/ L3	Atmos-	Aerosol properties	5km	10min/1hr/ 1dy/1mon		
	phere	phere	Cloud properties	5km	10min	
	Ocean	Sea surface temperature	2km	10min/1hr/ 1dy/1mon	NetCDF	
		Ocean color (Chlorophyll-a)	5km(full) 1km(Japan)	1hr/1dy/1mon		
	Land	Wild fire	2km	10min/1hr/ 1dy/1mon	CSV	
	Flux	Photosynthetically active radiation (PAR) & Shortwave radiation (SWR)	5km(full) 1km(Japan)	10min/1hr/ 1dy/1mon	NetCDF	
		Photovoltaic Power (image only)	1km/4km	10min	-	
L4	Model	Aerosol Property (by MRI/JMA)	Lon. 0.375 deg., Lat. 0.37147 - 0.37461 deg.	1hr	NetCDF	
		Sea surface temperature (by JAXA/JAMSTEC)	1/36 deg.	1hr	NetCDF	

L4 SST (assimilated Himawari, AMSR2, GMI and Windsat SSTs)

- Current satellites
 - 6 satellites (including 2 new ones) in orbit: GOSAT (2009-present) (w/ NIES, MOE), GCOM-W (2012-present), GPM (2014-present) (w/ NASA), ALOS-2 (2014-present), GCOM-C (2017-present), and GOSAT-2 (2018-present) (w/ NIES, MOE)
- Upcoming satellites
 - EarthCARE (w/ ESA) in JFY 2019 (TBD)
 - ALOS-3 (optical) and ALOS-4 (SAR) are scheduled in JFY 2020
- Himawari-8
 - Develop and distribute geophysical parameters at JAXA since August 2015
 - Satellit assimilated model output (L4) aerosol and SST are now available.
- Data distribution
 - http://www.gportal.jaxa.jp/gp/top.html (ADEOS, ADEOS-2, AMSR-E, TRMM, GPM, GCOM-W, GCOM-C and future environmental satellites)
 - https://data2.gosat.nies.go.jp/index_en.html (GOSAT at NIES)
 - https://satpf.jp/spf_atl/?lang=en (ALOS, ALOS-2 at PLATFORM) (NOT FREE except PIs)
 - https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm (ALOS 30-m mesh DSM) (FREE)
 - http://suzaku.eorc.jaxa.jp/GCOM_W/research/resdist.html (GCOM-W research)
 - https://sharaku.eorc.jaxa.jp/GSMaP (GSMaP, GSMaP_NOW)
 - http://www.eorc.jaxa.jp/ptree (Himawari data at JAXA)
- A http://kuroshio.eorc.jaxa.jp/JASMES/index.html (MODIS/GCOM-C, etc.)
 - http://suzaku.eorc.jaxa.jp/GHRSST/index.html (JAXA's SST in GDS (NetCDF) format)